船舶和海洋工程解决方案
近年来,用户对产品安全性和可靠性要求越来越严苛,同时对产品的研发周期以及设计成本和可靠性等都提出了更严格的要求,市场需要太阳成集团能够在更短的时间内设计出高可靠性、低成本的产品,以适应其需求。然而,传统的“设计-试验-修改-试验”思路需要大量的人力、物力和财力,而借助有限元分析方法,设计人员可以从产品设计阶段开始发现问题、优化设计、改进方案和一体化优化流程,极大的缩短了研发周期,降低研发成本,该方法也正在各行各业扮演着重要角色。
船舶的结构设计复杂、而且其运行环境经常是高速、强水流、强气流等条件,所以要求用可靠的软件来计算在复杂载荷条件下结构的静、动力响应,损伤破坏和系统的寿命。要达到这一要求,分析软件不但必须具有一般的静动强度分析功能和结构动力学分析功能,而且 在非线性静力/动力、断裂破坏、各种非线性材料包括复合材料、以及各种复杂的复合高度非线性问题的求解方面都应具有良好的解决方案。
由于船舶的运行环境十分复杂,设计软件还要求能够模拟复杂的载荷和边界条件。另外,分析软件还应该既具有很强的数值运算能力和高效的求解技术,还应该具有快速生成网格的技术、方便的前后处理技术、以及良好的开放性特征。对于船舶行业设计过程遇到的突出矛盾和问题,从应用领域来分主要有以下四个方面:
1)军用船舶:主要考虑考虑在战争中的生存能力,如水下爆炸的时候抗击冲击波的能力;提高舰船的隐蔽性,船载设备在爆炸载荷下的生存能力等。
船舶搁浅碰撞
船舶搁浅碰撞
2)游艇和客运船舶:对于小型的船只和游艇,主要是考虑船舶的总体强度,减低振动的影响,以及制造成本;对于大型的客船,主要也是考虑船舶的强度、在风浪中的承载力以及减低振动的影响,并减短设计周期;对于赛艇,主要是提高性能和减轻质量,会设计大量新型复合材料的设计。
船舶CFD网格
船体运行分析
3)商用货运船舶:主要是提高船舶的质量,提高承载力,尤其是近年来一些新型船舶的出现,如LNG船、LPG船,对设计要求越来越高。
螺旋桨仿真
4)发动机等船舶辅助设施的要求是提高能效、减轻重量、减振降噪。
船舶总体
船载设备(如雷达、电子设备、火炮等)
动力传动系统(如曲轴)
推进器和扭矩机构
主要分析类型则包括:
结构强度
模态(湿模态)
爆炸载荷下的响应
动态冲击分析
热分析
船体搁浅损伤等
- 上一篇:汽车与交通运输行业解决方案 2017/1/18
- 下一篇:航空航天与国防解决方案 2017/1/18